JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Long Intergenic Noncoding RNA (LincRNA) Landscape of the Soybean Genome.

Plant Physiology 2018 March
Long intergenic noncoding RNAs (lincRNAs) are emerging as important regulators of diverse biological processes. However, our understanding of lincRNA abundance and function remains very limited especially for agriculturally important plants. Soybean ( Glycine max ) is a major legume crop plant providing over a half of global oilseed production. Moreover, soybean can form symbiotic relationships with Rhizobium bacteria to fix atmospheric nitrogen. Soybean has a complex paleopolyploid genome and exhibits many vegetative and floral development complexities. Soybean cultivars have photoperiod requirements restricting its use and productivity. Molecular regulators of these legume-specific developmental processes remain enigmatic. Long noncoding RNAs may play important regulatory roles in soybean growth and development. In this study, over one billion RNA-seq read pairs from 37 samples representing nine tissues were used to discover 6,018 lincRNA loci. The lincRNAs were shorter than protein-coding transcripts and had lower expression levels and more sample specific expression. Few of the loci were found to be conserved in two other legume species (chickpea [ Cicer arietinum ] and Medicago truncatula ), but almost 200 homeologous lincRNAs in the soybean genome were detected. Protein-coding gene-lincRNA coexpression analysis suggested an involvement of lincRNAs in stress response, signal transduction, and developmental processes. Positional analysis of lincRNA loci implicated involvement in transcriptional regulation. lincRNA expression from centromeric regions was observed especially in actively dividing tissues, suggesting possible roles in cell division. Integration of publicly available genome-wide association data with the lincRNA map of the soybean genome uncovered 23 lincRNAs potentially associated with agronomic traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app