Add like
Add dislike
Add to saved papers

Effect of FH535 on in vitro maturation of porcine oocytes by inhibiting WNT signaling pathway.

Wingless-int (WNT) signaling pathway is vital to modulate life processes, including cell fate determination, cell differentiation, cell proliferation, cell apoptosis and embryogenesis. To demonstrate the uncertain effect of the canonical WNT signaling pathway on oocyte maturation, immature porcine oocytes were collected and cultured in vitro with the WNT/β-catenin inhibitor FH535. The concentrations of FH535 were selected as 0.00, 0.01, 0.10, 1.00 and 10.00 μmol/L. The results showed that the optimum concentration of FH535 on oocyte maturation was 1.00 μmol/L. In this concentration, the proportion of MII oocytes increased (P < 0.05). The rate of cleavage was the same with the control (P > 0.05), while the rate of blastocysts in the 1.00 μmol/L FH535 treated group was higher than that of control (P < 0.01). Additionally, the average number of nuclei in blastocysts raised significantly (P < 0.05). The inhibition of WNT could regulate expression of maturation-related genes, including Cdc-2, Bmp-15, Gdf-9 and Mos. In the 1.00 μmol/L FH535 treated group, the messenger RNA level of β-catenin showed no significant change compared to the control (P > 0.05), but the protein abundance was decreased (P < 0.05). This study revealed that the inhibition of FH535 on the WNT signaling pathway could promote the maturation of porcine oocytes and altered gene expressions in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app