Add like
Add dislike
Add to saved papers

The role of distal tubule and collecting duct sodium reabsorption in sunitinib-induced hypertension.

OBJECTIVE: Antiangiogenic receptor tyrosine kinase inhibitors (RTKI) induce arterial hypertension which may limit their use. Renal fractional sodium excretion (FENa) is reduced in early RTKI-induced hypertension, whereas fractional lithium excretion is unaltered. Therefore, we tested the hypothesis that activated distal tubule and collecting duct sodium reabsorption contributes to RTKI-induced hypertension.

METHODS: Amiloride-sensitive and hydrochlorothiazide (HCTZ)-sensitive fractional sodium reabsorption (FRNa) and renal epithelial sodium channel (ENaC) as well as sodium chloride cotransporter (NCC) abundances were determined in sunitinib-treated and control rats. The antihypertensive effects of amiloride and HCTZ were investigated by radiotelemery.

RESULTS: After 4 days of treatment, mean arterial pressure was 20 mmHg higher, FENa was lower (0.32 ± 0.08% vs. 0.65 ± 0.14%; P < 0.05), and renal medullary-ENaC protein abundance was higher in sunitinib-treated rats than in controls. Amiloride-sensitive FRNa was 2.37 ± 0.52% in sunitinib-treated rats vs. 2.66 ± 0.44% in controls (n.s.). HCTZ increased FENa by a similar magnitude without affecting amiloride-sensitive FRNa in both groups. After 14 days of treatment, renal medullary β-ENaC protein abundance was higher in rats that received sunitinib than in controls, whereas α-ENaC, γ-ENaC, and NCC abundances were similar in both groups. Amiloride and HCTZ reduced the sunitinib-induced mean arterial pressure rise by 8 ± 3 mmHg (P < 0.05) and 12 ± 2 mmHg (P < 0.05), respectively, without additive effects when combined.

CONCLUSION: ENaC-dependent and thiazide-sensitive sodium-retaining mechanisms are not overactive in sunitinib-induced hypertension but ENaC blockers and in particular thiazides may be suitable for its treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app