Add like
Add dislike
Add to saved papers

Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe 2 .

Inorganic Chemistry 2018 January 17
As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for its abundant magnetic properties. Samarium-iron alloy system SmFe2 is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe2 has been identified as a cubic Fd3̅m structure at room temperature; however, the cubic symmetry, in principle, does not match the spontaneous magnetization along the [111]cubic direction. Here we studied the crystal structure of SmFe2 by high-resolution synchrotron X-ray powder diffraction, X-ray total scattering, and selected-area electron diffraction methods. SmFe2 is found to adopt a centrosymmetric trigonal R3̅m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]cubic to [110]cubic direction and is further evidenced by the inflection of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the field-cooling-zero field-cooling curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe2 could be useful to understand the magnetostriction and related physical properties of other RM2 -type pseudocubic Laves-phase intermetallic compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app