Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.

Biomacromolecules 2018 Februrary 13
Softwood bleached kraft pulp (SBKP) and microcrystalline cellulose (MCC) were oxidized using a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated system. The TEMPO-oxidized SBKP prepared with 10 mmol/g NaClO (SBKP-10) had a higher mass recovery ratio and higher carboxylate content than the other prepared celluloses including the TEMPO-oxidized MCCs. The SBKP-10 was then exposed to cavitation-induced forces through sonication in water for 10-120 min to prepare aqueous dispersions of needle-like TEMPO-oxidized cellulose nanocrystals (TEMPO-CNCs) with homogeneous width of 3.5 to 3.6 nm and average lengths of ∼200 nm. The average chain lengths of the cellulose molecules that make up the TEMPO-CNCs were less than half the average lengths of the TEMPO-CNCs. Compared with conventional CNCs prepared by acid hydrolysis, the TEMPO-CNCs prepared by the acid-free and dialysis-free process exhibited higher mass recovery ratios, significantly higher amounts of surface anionic groups, and smaller and more homogeneous widths.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app