Add like
Add dislike
Add to saved papers

Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase.

Carbonic anhydrase (CA) is a ubiquitous metalloenzyme with a Zn cofactor coordinated to trigonal histidine imidazole moieties in a tetrahedral geometry. Removal of the Zn cofactor in CA and subsequent binding of Ir afforded CA[Ir]. Under mild and neutral conditions (30 °C, pH 7), CA[Ir] exhibited water-oxidizing activity with a turnover frequency (TOF) of 39.8 min-1 , which is comparable to those of other Ir-based molecular catalysts. Coordination of Ir to the apoprotein of CA is thermodynamically preferred and is associated with an exothermic energy change (ΔH) of -10.8 kcal mol-1 , which implies that the CA apoprotein is stabilized by Ir binding. The catalytic oxygen-evolving activity of CA[Ir] is displayed only if Ir is bound to CA, which functions as an effective biological scaffold that activates the Ir center for catalysis. The results of this study indicate that the histidine imidazoles at the CA active site could be exploited as beneficial biological ligands to provide unforeseen biochemical activity by coordination to a variety of transition-metal ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app