Add like
Add dislike
Add to saved papers

Changes in primary and secondary metabolites of Mentha aquatica L. exposed to different concentrations of manganese.

This experiment was conducted in order to determine the effects of different concentrations of manganese (Mn) on the levels and correlations of multiple primary and secondary metabolites in Mentha aquatica. With this aim, four levels of Mn concentrations were used as follows: basic Hoagland's solution (control), 40, 80, and 160 μM of Mn supplied as MnSO4 .H2 O. The results indicated that the biomass and the contents of photosynthetic pigments and soluble carbohydrates were higher in the plants that were treated with the moderate concentrations of Mn (40 and 80 μM) than the control and 160 μM-treated plants. On the other hand, the contents of flavonoids, anthocyanins, malonaldehyde (MDA), hydrogen peroxide (H2 O2 ), and the activities of antioxidant enzymes (total superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)) were progressively increased with the enhancement of Mn concentration in the nutrient solution. In addition, there were clear differences in the content and chemical composition of essential oils among the control and treatment groups. In this study, 1,8-cineole, menthofuran, and β-caryophyllene were the most abundant constituents of essential oils in both the control and Mn-treated plants. The correlation analysis between pairs of the primary and secondary metabolites showed that there were positive and negative correlations among the variables when the Mn concentration was increased in the nutrient solution. These findings clearly display a positive effect of Mn up to 80 μM in the nutrient solution on the growth of M. aquatica.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app