Add like
Add dislike
Add to saved papers

Confirmatory surface analysis of equivocal documents with pigment-based gel inks via laser desorption laser postionization mass spectrometry imaging.

Laser desorption laser postionization time-of-flight mass spectrometry (L2MS) was applied for unambiguous discrimination of pigment-based inks in blue, black, and red gel pens and molecular imaging of equivocal documents in a quasi-non-destructive way. In comparison to laser desorption mass spectrometry (LD-MS), additional discriminatory information on ink components is acquired uniquely, facilitating the distinct differentiation of various pigmented gel inks. More importantly, diversified images of additional characteristic ions achieved using L2MS offer reliable support to discriminate forged documents and decipher important hidden contents. Apart from minimized matrix effect and maximized ionization yield, direct and confirmatory identification of forged documents is achieved successfully without solvent or matrix involved, not only eliminating unwanted damage and contamination to the samples but significantly shortening the overall analysis time. In addition, L2MS is a minimally destructive approach with tiny analyte consumption. With these appealing qualities, L2MS imaging is poised to be a powerful tool for confirmatory surface analysis of complex pigment-based samples. Graphical Abstract Weight and see: Highly distinct and comprehensive images of counterfeit documents with blue-pigmented gel inks are achieved successfully, due to the high sensitivity and increased ion yield of laser desorption laser postionization time-of-flight mass spectrometry. The hidden important contents of the obliterated documents are visually deciphered with the help of the additional chemical information.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app