Add like
Add dislike
Add to saved papers

RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells.

In mammalian cells, bulky DNA adducts located in the template but not the coding strand of genes block elongation by RNA polymerase II (RNAPII). The blocked RNAPII targets these transcription-blocking adducts to undergo more rapid excision repair than adducts located elsewhere in the genome. In excision repair, coupled incisions are made in the damaged DNA strand on both sides of the adduct. The fate of RNAPII in the course of this transcription-coupled repair (TCR) pathway is unclear. To address the fate of RNAPII, we used methods that control transcription to initiate a discrete "wave" of elongation complexes. Analyzing genome-wide transcription and repair by next-generation sequencing, we identified locations of elongation complexes and transcription-repair coupling events in genes throughout the genome. Using UV-exposed human skin fibroblasts, we found that, at the dose used, a single wave of elongation complexes was blocked within the first 25 kb of genes. TCR occurred where the elongation complexes were blocked, and repair was associated with the dissociation of these complexes. These results indicate that individual elongation complexes do not engage in multiple rounds of TCR with successive lesions. Our results are consistent with a model in which RNAPII is dissociated after the dual incision of the transcription-blocking lesion, perhaps by Cockayne syndrome group B translocase, or during the synthesis of a repair patch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app