JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Photoperiodic responses of Sahelian malaria mosquitoes Anopheles coluzzii and An. arabiensis.

Parasites & Vectors 2017 December 28
BACKGROUND: Throughout large parts of sub-Saharan Africa, seasonal malaria transmission follows mosquito density, approaching zero during the dry season and peaking during the wet season. The mechanisms by which malaria mosquitoes survive the long dry season, when no larval sites are available remain largely unknown, despite being long recognized as a critical target for vector control. Previous work in the West African Sahel has led to the hypothesis that Anopheles coluzzii (formerly M-form Anopheles gambiae) undergoes aestivation (dry-season diapause), while Anopheles gambiae (s.s.) (formerly S-form An. gambiae) and Anopheles arabiensis repopulate each wet season via long-distance migration. The environmental cues used by these species to signal the oncoming dry season have not been determined; however, studies, mostly addressing mosquitoes from temperate zones, have highlighted photoperiod and temperature as the most common token stimuli for diapause initiation. We subjected newly established colonies of An. coluzzii and An. arabiensis from the Sahel to changes in photoperiod to assess and compare their responses in terms of longevity and other relevant phenotypes.

RESULTS: Our results showed that short photoperiod alone and to a lesser extent, lower nightly temperature (representing the early dry season), significantly increased longevity of An. coluzzii (by ~30%, P < 0.001) but not of An. arabiensis. Further, dry season conditions increased body size but not relative lipid content of An. coluzzii, whereas body size of An. arabiensis decreased under these conditions.

CONCLUSIONS: These species-specific responses underscore the capacity of tropical anophelines to detect mild changes (~1 h) in photoperiod and thus support the role of photoperiod as a token stimulus for An. coluzzii in induction of aestivation, although, these responses fall short of a complete recapitulation of aestivation under laboratory conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app