Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human adipose derived stem cells regress fibrosis in a chronic renal fibrotic model induced by adenine.

BACKGROUND AND AIMS: ADSCs transplantation had been shown in some experimental models of kidney damage that it improves kidney function and reduces fibrosis. In this study we evaluated the effect of human adipose tissue-derived stem cell (hADSC) therapy in a chronic kidney damage experimental model.

METHODS: A chronic kidney injury was induced by daily orogastric administration of adenine (100mg/kg) to male Wistar rats for 28 days. hADSCs were isolated, expanded and characterized before transplantation. hADSC administration was performed in a tail vein at a dose of 2 x106 cells/animal. Animals were sacrificed at 7 days post-treatment. The percentage of fibrotic tissue, serum and urine levels of urea, creatinine, total protein and renal mRNA of COL1A1, TGFB1, CTGF, ACTA2, IL6, IL10, TNF were analyzed.

RESULTS: hADSCs treatment significantly reduces kidney fibrosis, improves urea and creatinine serum and urine levels, and diminishes COL1A1, TGFB1, CTGF, ACTA2 mRNA kidney levels.

CONCLUSIONS: These results showed that cell therapy using hADSCs improves renal function and reduces fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app