JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Upconversion Luminescence-Activated DNA Nanodevice for ATP Sensing in Living Cells.

Designer DNA nanodevices have attracted extensive interest for detection of specific targets in living cells. However, it still remains a great challenge to construct DNA sensing devices that can be activated at desired time with a remotely applied stimulus. Here we report a rationally designed, synthetic DNA nanodevice that can detect ATP in living cells in an upconversion luminescence-activatable manner. The nanodevice consists of a UV light-activatable aptamer probe and lanthanide-doped upconversion nanoparticles which acts as the nanotransducers to operate the device in response to NIR light. We demonstrate that the nanodevice not only enables efficient cellular delivery of the aptamer probe into live cells, but also allows the temporal control over its fluorescent sensing activity for ATP by NIR light irradiation in vitro and in vivo. Ultimately, with the availability of diverse aptamers selected in vitro, the DNA nanodevice platform will allow NIR-triggered sensing of various targets as well as modulation of biological functions in living systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app