Add like
Add dislike
Add to saved papers

Hydrogen Inhalation is Superior to Mild Hypothermia for Improving Neurological Outcome and Survival in a Cardiac Arrest Model of Spontaneously Hypertensive Rat.

Shock 2018 December
BACKGROUND: Postcardiac arrest syndrome is the consequence of whole-body ischemia-reperfusion events that lead to multiple organ failure and eventually to death. Recent animal studies demonstrated that inhalation of hydrogen greatly mitigates postresuscitation myocardial dysfunction and brain injury. However, the influence of underlying heart disease on the efficacy of hydrogen is still unknown. In the present study, we investigated the effects of hydrogen inhalation on neurological outcome and survival in a cardiac arrest model of spontaneously hypertensive rat (SHR).

METHODS: Cardiopulmonary resuscitation was initiated after 4 min of untreated ventricular fibrillation in 40 SHRs. Immediately after successful resuscitation, animals were randomized to be ventilated with 98% oxygen and 2% nitrogen under normothermia (Ctrl), 2% nitrogen under hypothermia (TH), 2% hydrogen under normothermia (H2), or 2% hydrogen under hypothermia (H2+TH) for 2 h. Hypothermia was maintained at 33°C for 2 h. Animals were observed up to 96 h for assessment of survival and neurologic recovery.

RESULTS: No statistical differences in baseline measurements were observed among groups and all the animals were successfully resuscitated. Compared with Ctrl, serum cardiac troponin T measured at 5 h and myocardial damage score measured at 96 h after resuscitation were markedly reduced in H2, TH, and H2+TH groups. Compared with Ctrl and TH, astroglial protein S100 beta measured during the earlier postresuscitation period, and neurological deficit score and neuronal damage score measured at 96 h were considerably lower in both H2 and H2+TH groups. Ninety-six hours survival rates were significantly higher in the H2 (80.0%) and H2+TH (90.0%) groups than TH (30.0%) and to Ctrl (30.0%).

CONCLUSIONS: Hydrogen inhaling was superior to mild hypothermia for improving neurological outcome and survival in cardiac arrest and resuscitation model of systemic hypertension rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app