Add like
Add dislike
Add to saved papers

Cartilage quantitative T2 relaxation time 2-4 years following isolated anterior cruciate ligament reconstruction.

Cartilage T2 relaxation time in isolated anterior cruciate ligament reconstruction (ACLR) without concomitant meniscal pathology and their changes over time remain unclear. The purpose of this exploratory study was to: (i) compare cartilage T2 relaxation time (T2 values) in people with isolated ACLR at 2-3 years post-surgery (baseline) and matched healthy controls and; (ii) evaluate the subsequent 2-year change in T2 values in people with ACLR. Twenty-eight participants with isolated ACLR and nine healthy volunteers underwent knee magnetic resonance imaging (MRI) at baseline; 16 ACLR participants were re-imaged 2 years later. Cartilage T2 values in full thickness, superficial layers, and deep layers were quantified in the tibia, femur, trochlear, and patella. Between-group comparisons at baseline were performed using analysis of covariance adjusting for age, sex, and body mass index. Changes over time in the ACLR group were evaluated using paired sample t-tests. ACLR participants showed significantly higher (p = 0.03) T2 values in the deep layer of medial femoral condyle at baseline compared to controls (mean difference 4.4 ms [13%], 95%CI 0.4, 8.3 ms). Over 2 years, ACLR participants showed a significant reduction (p = 0.04) in T2 value in the deep layer of lateral tibia (mean change 1.4 ms [-7%], 95%CI 0.04, 2.8 ms). The decrease in T2 values suggests improvement in cartilage composition in the lateral tibia (deep layer) of ACLR participants. Further research with larger ACLR cohorts divided according to meniscal status and matched healthy cohorts are needed to further understand cartilage changes post-ACLR. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2022-2029, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app