Add like
Add dislike
Add to saved papers

Improvement in xylooligosaccharides production by knockout of the β - xyl1 gene in Trichoderma orientalis EU7-22.

3 Biotech 2018 January
The goal of this study was to enhance the production of xylooligosaccharides (XOs) and reduce the production of xylose. We investigated β-xylosidases, which were key enzymes in the hydrolysis of xylan into xylose, in Trichoderma orientalis EU7-22. The binary vector pUR5750G/ bxl :: hph was constructed to knock out the β - xyl1 gene (encoding β-xylosidases) in T. orientalis EU7-22 by homologous integration, producing the mutant strain T. orientalis Bxyl-1. Xylanase activity for strain Bxyl-1 was 452.42 IU/mL, which increased by only 0.07% compared to that of parental strain EU7-22, whereas β-xylosidase activity was 0.06 IU/mL, representing a 91.89% decrease. When xylanase (200 IU/g xylan), produced by T. orientalis EU7-22 and T. orientalis Bxyl-1, was used to hydrolyze beechwood xylan, in contrast to the parental strain, the XOs were enhanced by 83.27%, whereas xylose decreased by 45.80% after 36 h in T. orientalis Bxyl-1. Based on these results, T. orientalis Bxyl-1 has great potential for application in the production of XOs from lignocellulosic biomass.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app