Add like
Add dislike
Add to saved papers

Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment.

Carbohydrate Polymers 2018 Februrary 16
The study aims for development of an efficient polymeric carrier for evaluating pharmaceutical potentialities in modulating the drug profile of quercetin (QUE) in anti-diabetic research. Alginate and succinyl chitosan are focused in this investigation for encapsulating quercetin into core-shell nanoparticles through ionic cross linking. The FT-IR, XRD, NMR, SEM, TEM, drug entrapment and loading efficiency are commenced to examine the efficacy of the prepared nanoparticles in successful quercetin delivery. Obtained results showed the minimum particle size of ∼91.58nm and ∼95% quercetin encapsulation efficiently of the particles with significant pH sensitivity. Kinetics of drug release suggested self-sustained QUE release following the non-fickian trend. A pronounced hypoglycaemic effect and efficient maintenance of glucose homeostasis was evident in diabetic rat after peroral delivery of these quercetin nanoparticles in comparison to free oral quercetin. This suggests the fabrication of an efficient carrier of oral quercetin for diabetes treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app