Add like
Add dislike
Add to saved papers

Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis.

Carbohydrate Polymers 2018 Februrary 16
Computational analyses followed by traditional wet-bench experiments have become a method of choice due to successful results. To enhance the solubility and bioavailability of curcumin within chitosan nanoparticle, we have exploited computational methodologies i.e. docking, BBD-RSM and MD simulation for the polymer selection, NPs' formulation, optimization and their stability confirmation in an aqueous medium, respectively. Formulated CSCur NPs were assessed for in-vitro release, which exhibited a sustained release pattern and four-fold higher cytotoxic activity in a nanoparticulated system. Enhanced uptake, apoptotic effect of CSCur NPs were established by morphological changes in cells as observed by fluorescence microscopy and FE-SEM. DNA damage, cell-cycle blockage and elevated ROS levels further confirm the anticancer activity of the CSCur NPs following apoptotic pathways. In-vivo study on Danio rerio, for uptake and toxicity reveal the particle's biocompatibility and nontoxicity. Therefore, CSCur NPs could be the potential formulation for a safe chemotherapeutic drug for cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app