Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Reduction in the exchange of coastal dissolved organic matter and microgels by inputs of extra riverine organic matter.

Water Research 2018 March 16
Rivers drive large amounts of terrestrial and riverine organic matter into oceans. These organic materials may alter the self-assembly of marine dissolved organic matter (DOM) polymers into microgels and can even affect the behavior of existing natural microgels. We used Suwannee River humic acid, fulvic acid, and natural organic matter as a model of riverine organic matter (ROM) to investigate the impacts of ROM input on DOM polymer and microgel conversion. Our results indicated that the release of extra ROM, even at low concentrations (0.1-10 mg L-1 ), into the marine organic matter pool decreased the size of self-assembled DOM polymers (from 4-5 μm to < 1 μm) and dispersed the existing natural microgels into smaller particles (from 4-5 μm to 2-3 μm). The particle size of the microgel phase was also less sensitive than that of the DOM polymers to external changes (addition of ROM). This size reduction in DOM aggregation and existing microgels may be closely tied to the surface chemistry of the organic matter, such as negative surface charge stabilization and Ca2+ cross-linking bridges. These findings reveal that ROM inputs may therefore impede the self-assembly of DOM polymers into particulate organic matter and reduce the sedimentation flux of organic carbon and other elements from surface water to the deep ocean, thereby disturbing the biological pump, the downward transportation of nutrients, and the marine organic carbon cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app