Add like
Add dislike
Add to saved papers

Loading of polymyxin B onto anionic mesoporous silica nanoparticles retains antibacterial activity and enhances biocompatibility.

Polymyxin B is a polycationic antibiotic used as the last line treatment against antibiotic-resistant Gram negative bacteria. However, application of polymyxin B is limited because of its toxicity effects. Herein, we used bare and surface modified mesoporous silica nanoparticles (MSNs) with an average diameter of 72.29 ± 8.17 nm as adsorbent for polymyxin B to improve its therapeutic properties. The polymyxin B adsorption onto MSN surfaces was explained as a function of pH, type of buffer and surface charge of nanoparticles, according to the ζ-potential of silica nanoparticles and adsorption kinetics results. The highest value of the adsorption capacity (about 401 ± 15.38 mg polymyxin B/ g silica nanoparticles) was obtained for the bare nanoparticles in Tris buffer, pH 9. Release profiles of polymyxin B showed a sustained release pattern, fitting Power law and Hill models. The antibiotic molecules-loaded nanoparticles showed enhanced antibacterial activity compared to free antibiotic against different Gram negative bacteria. Biocompatibility evaluation results revealed that loading of polymyxin B onto MSNs can decrease the cytotoxicity effects of the drug by reducing ROS generation. Our results suggest that formulation of drugs by adsorption onto MSNs may offer a way forward to overcome the adverse effects of some antibiotics such as polymyxin B without compromising their antimicrobial properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app