Add like
Add dislike
Add to saved papers

Reprogramming the Activatable Peptide Display Function of Adeno-Associated Virus Nanoparticles.

ACS Nano 2018 Februrary 28
We harnessed an intrinsic activatable peptide display behavior shared by several parvoviruses, including the adeno-associated virus (AAV), in order to design protein-based nanodevices that can carry out an exogenous functional output in response to stimulus detection. Specifically, we generated truncated viral capsid subunits that, when combined with native capsid components into mosaic capsids, can perform robust activatable peptide display. By modulating the ratio of subunits in the mosaic capsid, properties of the activatable peptide display function can be optimized. Interestingly, the truncated subunits can form homomeric capsids not observed in nature, but at the price of losing the ability to carry out activatable peptide display. Collectively, our results demonstrate the importance of capsid mosaicism when activatable peptide display is desired and help explain why the wild-type AAV capsid exists as a mosaic of different subunits. This proof-of-concept study illustrates a strategy for reprogramming a particular conformational output behavior of AAV in pursuit of the long-term vision of creating stimulus-responsive nanodevices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app