Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Validation and application of a multiresidue method based on liquid chromatography-tandem mass spectrometry for evaluating the plant uptake of 74 microcontaminants in crops irrigated with treated municipal wastewater.

Reuse of treated wastewater for agricultural purposes can mitigate water stress in some regions where the lack of water is an extended problem. However, the environmental long-term consequences of this practice are still unknown. It is demonstrated that using reclaimed water for irrigation lead to accumulation and translocation of some microcontaminants (MCs) in soil and crops. However, so far, only a small group of contaminants has been investigated. This study aims to develop and validate a simple and efficient multiresidue method based on QuEChERs (Quick, Easy, Cheap, Effective and Rugged) extraction coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS). The novelty of the study relays in the large number of MCs analyzed (74), some of them not previously investigated, in three commodities (lettuce, radish and strawberry). Optimized conditions yielded good results for the three commodities under study. Up to 84% of the compounds were recovered within a 70-120% range, with good repeatability (relative standard deviations below 20% in most cases). Method detection (MDLs) and quantification limits (MQLs) ranged from 0.01 to 2 ng/g. The proposed method was successfully applied to assess the potential uptake of MCs by lettuce and radish crops irrigated with wastewater under controlled conditions for 3 and 1.5 months, respectively. 12 compounds were detected in the crops with concentrations ranging from 0.03 to 57.6 ng/g. N-Formyl-4-aminoantipyrine (4FAA) was the most concentrated compound. The application of this method demonstrated for the first time the accumulation of 5 contaminants of emerging concern (CECs) not previously reported: 4FAA, N-Acetyl-4-aminoantipyrine (4AAA), hydrochlorothiazide, mepivacaine and venlafaxine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app