Add like
Add dislike
Add to saved papers

Estimation of an area between the baseline and the effect curve parameter for lactate levels in the hippocampi of neonatal rats during anesthesia.

Naturally occurring caspase-3-dependent cell death is a widespread event in the immature nervous system. Prolonged exposure to anesthetics promotes activation of caspase-3 in the developing hippocampus. In addition, anesthetics can upregulate the levels of metabolite lactate in the adult brain. The long-lasting increase in lactate levels may affect viability of brain cells. However, it remains unknown if anesthetic-induced activation of caspase-3 is accompanied by an increase in lactate levels in the immature brain. We investigated expression of apoptotic proteins by immunoblot and estimated an area between the baseline and the effect curve (ABEC) parameter for lactate levels by high-resolution magnetic resonance spectroscopy in the hippocampi of 2-day-old Wistar rats after treatment with anesthetic urethane. Both 1.5 and 2.5 g/kg of urethane resulted in a dose-dependent increase in the levels of active caspase-3 in the hippocampi in 4 h after injection. This anesthetic-induced increase in the levels of active caspase-3 was preceded by a prolonged dose-dependent rise in lactate levels. The dose-dependent increase in lactate levels was not associated with the urethane-induced changes in respiratory rate in the treated rat pups. Present results evidence that the prolonged dose-dependent elevation in lactate levels in the developing brain can be induced even by urethane, which was suggested to be suitable for various physiopharmacological studies previously. The observed sequence of events after treatment with urethane suggests the possible role of lactate as a neurodamaging agent in the immature brain in case of the sustaining rise in the levels of this metabolite during prolonged anesthesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app