Add like
Add dislike
Add to saved papers

Patterned Plasmonic Surfaces-Theory, Fabrication, and Applications in Biosensing.

Low-profile patterned plasmonic surfaces are synergized with a broad class of silicon microstructures to greatly enhance near-field nanoscale imaging, sensing, and energy harvesting coupled with far-field free-space detection. This concept has a clear impact on several key areas of interest for the MEMS community, including but not limited to ultra-compact microsystems for sensitive detection of small number of target molecules, and "surface" devices for optical data storage, micro-imaging and displaying. In this paper, we review the current state-of-the-art in plasmonic theory as well as derive design guidance for plasmonic integration with microsystems, fabrication techniques, and selected applications in biosensing, including refractive-index based label-free biosensing, plasmonic integrated lab-on-chip systems, plasmonic near-field scanning optical microscopy and plasmonics on-chip systems for cellular imaging. This paradigm enables low-profile conformal surfaces on microdevices, rather than bulk material or coatings, which provide clear advantages for physical, chemical and biological-related sensing, imaging, and light harvesting, in addition to easier realization, enhanced flexibility, and tunability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app