Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PhoDAGs Enable Optical Control of Diacylglycerol-Sensitive Transient Receptor Potential Channels.

Cell Chemical Biology 2018 Februrary 16
Diacylglycerol-sensitive transient receptor potential (TRP) channels play crucial roles in a wide variety of biological processes and systems, but their activation mechanism is not well understood. We describe an optical toolkit by which activation and deactivation of these ion channels can be controlled with unprecedented speed and precision through light stimuli. We show that the photoswitchable diacylglycerols PhoDAG-1 and PhoDAG-3 enable rapid photoactivation of two DAG-sensitive TRP channels, Trpc2 and TRPC6, upon stimulation with UV-A light, whereas exposure to blue light terminates channel activation. PhoDAG photoconversion can be applied in heterologous expression systems, in native cells, and even in mammalian tissue slices. Combined laser scanning-controlled photoswitching and Ca2+ imaging enables both large-scale mapping of TRP channel-mediated neuronal activation and localized mapping in small cellular compartments. Light-switchable PhoDAGs provide an important advance to explore the pathophysiological relevance of DAG-sensitive TRP channels in the maintenance of body homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app