JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy.

Structure 2018 January 3
The heat-shock protein 90 (Hsp90) molecular chaperones are highly conserved across species. However, their dynamic properties can vary significantly from organism to organism. Here we used high-precision optical tweezers to analyze the mechanical properties and folding of different Hsp90 orthologs, namely bacterial Hsp90 (HtpG) and Hsp90 from the endoplasmic reticulum (ER) (Grp94), as well as from the cytosol of the eukaryotic cell (Hsp82). We find that the folding rates of Hsp82 and HtpG are similar, while the folding of Grp94 is slowed down by misfolding of the N-terminal domain. Furthermore, the domain interactions mediated by the charged linker, involved in the conformational cycles of all three orthologs, are much stronger for Grp94 than for Hsp82, keeping the N-terminal domain and the middle domain in close proximity. Thus, the ER resident Hsp90 ortholog differs from the cytosolic counterparts in basic functionally relevant structural properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app