Add like
Add dislike
Add to saved papers

Zn isotopes fractionation during slags' weathering: One source of contamination, multiple isotopic signatures.

Chemosphere 2018 March
During the chemical weathering of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags, possible Zn isotopes fractionation was studied as a function of pH, atmosphere (open air vs nitrogen), and time. Bulk LBF and ISF displayed heavier signatures compared to Johnson Matthey Company (JMC) Zn standard solution (i.e. 0.13 ± 0.06‰ and 0.78 ± 0.13‰ for LBF and ISF, resp). The Zn signatures vary greatly by changes in solution pH; heavier signatures at low pH and lighter signature at high pH. Smithsonite (ZnCO3 ) formation could induce a big delta Δ66 ZnNitro-Open.atm of 1.13‰ at pH 10 and rapid zinc hydroxide precipitation could induce Δ66 ZnNitro-Open.atm of 0.13-0.2‰ at pH 8.5. In addition, slags contain many mineral phases: ∼80-84% of amorphous glassy phase (in v/v) and ∼16-20% of many other crystalline phases. Zn isotope signatures in primary mineral phases can be extrapolated where the signature of the amorphous glassy phase lies between -0.35‰ and -0.42‰, and that of the overall crystalline phases was estimated to be 2.12‰ for LBF and 5.74‰ for ISF. Therefore, un-weathered slags with many mineral phases can host distinct Zn isotope signatures, which further evolve significantly during chemical weathering. One should thus carefully consider the heterogeneity of slags and the low-temperature chemical processes which lead to diverse Zn isotopic signature in the end, when using Zn isotopes as tracer of smelter's contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app