Add like
Add dislike
Add to saved papers

Mirror neuron system activation in children with developmental coordination disorder: A replication functional MRI study.

BACKGROUND: It has been hypothesised that abnormal functioning of the mirror neuron system (MNS) may lead to deficits in imitation and the internal representation of movement, potentially contributing to the motor impairments associated with developmental coordination disorder (DCD).

AIMS: Using fMRI, this study examined brain activation patterns in children with and without DCD on a finger adduction/abduction task during four MNS activation states: observation; motor imagery; execution; and imitation.

METHODS AND PROCEDURES: Nineteen boys (8.25-12.75 years) participated, including 10 children with DCD (≤16th percentile on MABC-2; no ADHD/ASD), and nine typically developing controls (≥25th percentile on MABC-2).

OUTCOMES AND RESULTS: Even though children with DCD displayed deficits behaviourally on imitation (Sensory Integration & Praxis Test Subtests) and motor imagery assessments prior to scanning, no differences in MNS activation were seen between the DCD and control groups at a neurological level, with both groups activating mirror regions effectively across conditions. Small clusters of decreased activation during imitation were identified in non-mirror regions in the DCD group, including the thalamus, caudate, and posterior cingulate - regions involved in motor planning and attentional processes.

CONCLUSIONS AND IMPLICATIONS: The results of this study do not provide support for the MNS dysfunction theory as a possible causal mechanism for DCD. Further research to explore attentional and motor planning processes and how they may interact at a network level may enhance our understanding of this complex disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app