Add like
Add dislike
Add to saved papers

Micro-Raman imaging on 4H-SiC in contact with the electrode at room temperature.

Raman images (30μm×30μm×180μm) of a bulk 4H-SiC wafer in contact with a Ni/Au electrode film in 100nm/200nm thick were measured with Micro-Raman spectroscopy at room temperature. As the imaging area approached the interface between the SiC and electrode, the center frequency of the E2 (TO) mode (778cm-1 ) immediately declined; in the Raman imaging, relative distribution of compressive residual stress around residual tensile stress, and linewidth were broadened due to crystal distortion. For LOPC (LO-phonon-plasmon-coupled) mode (970cm-1 ), center frequency showed variation right next to the interface, while linewidth decreased slowly as the imaging area approached the interface. We evaluated the temperature dependence of the line broadening and the center frequency of the LOPC mode in 4H-SiC in a high-temperature region. Free carrier concentration increased with temperature, and remained almost constant in the center frequency after impurities were ionized completely.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app