Add like
Add dislike
Add to saved papers

Cortical and spinal conditioned media modify the inward ion currents and excitability and promote differentiation of human striatal primordium.

Human striatal precursor cells (HSPs) isolated from ganglionic eminence may differentiate in electrophysiologically functional excitable neuron-like cells and a number of endogenous molecules such as hormones, neurotransmitters or growth factors can actually regulate neuronal growing and differentiation. The purpose of this research was to assess, by electrophysiological and immunocytochemical analysis, if the type of culture medium could specifically impact on the neuronal differentiation potential of HSPs. Accordingly, HSPs were maintained in different inductive media such as cortical and spinal cord conditioned media, and we estimated the possible changes in the main ion currents, excitability and expression of neuronal markers indicative of neuronal differentiation. Our results have shown that 36 h exposure to each of the conditioned media, with their blend of autocrine and paracrine growth factors, was able to modify significantly the electrophysiological membrane properties and the functional expression of inward ionic currents in selected neuronal HSPs. Moreover, although both types of conditioned media determined neuronal maturation (increased neuritogenesis and increased expression of neuronal and striatal markers), each of them leads to the occurrence of different functional features. Particularly, the spinal medium caused a stronger depolarization of the membrane potential and significantly increased the amplitude of Na+ current as well as L- and N- type Ca2+ currents, definitely modifying their kinetics. In contrast, the cortical medium mainly caused a significant and more marked increase of the membrane conductance and time constant values. These results strongly support the plasticity of our cellular model that, although already committed towards a specific phenotype, it can be differently affected by the conditioned media, thereby resulting functionally modifiable according to environmental cues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app