Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A periodic disease transmission model with asymptomatic carriage and latency periods.

In this paper, the global dynamics of a periodic disease transmission model with two delays in incubation and asymptomatic carriage periods is investigated. We first derive the model system with a general nonlinear incidence rate function by stage-structure. Then, we identify the basic reproduction ratio [Formula: see text] for the model and present numerical algorithm to calculate it. We obtain the global attractivity of the disease-free state when [Formula: see text] and discuss the disease persistence when [Formula: see text]. We also explore the coexistence of endemic state in the nonautonomous system and prove the uniqueness with constants coefficients. Numerical simulations are provided to present a case study regarding the meningococcal meningitis disease transmission and discuss the influence of carriers on [Formula: see text].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app