Add like
Add dislike
Add to saved papers

Post-myocardial infarction exercise training beneficially regulates thyroid hormone receptor isoforms.

Thyroid hormone receptors (TRs) play a critical role in the expression of genes that are major determinants of myocardial contractility, including α-myosin heavy chain (α-MHC) and β-MHC. After myocardial infarction (MI), changes in myocardial TRs consistently correlate with changes in thyroid hormone (TH) target gene transcription, and this is thought to play a key role in the progression to end-stage heart failure. Interestingly, post-MI exercise training has been shown to beneficially alter TH-target gene transcription and preserve cardiac function without changing serum TH. Therefore, in this study, we investigated whether mild exercise training alters expression of α1 and β1 TR isoforms in post-MI rats. Seven-week-old male Sprague-Dawley rats underwent coronary ligation or sham operation, and were assigned to 3 groups (n = 10): sham, sedentary MI (MI-Sed), and exercise MI (MI-Ex). Treadmill training was initiated 1 week post-MI, and gradually increased up to 16 m/min, 5° incline, 50 min/day, 5 days/week, and lasted for a total of 8 weeks. Real-time polymerase chain reaction and gel electrophoresis were performed to quantify changes in TR isoforms. Our results illustrated that mRNA expression of TR-α1 and TR-β1 was higher in both MIs; however, protein electrophoresis data showed that TR-α1 was 1.91-fold higher (P < 0.05) and TR-β1 was 1.62-fold higher (P < 0.05) in the MI-Ex group than in the MI-Sed group. After MI, TR-α1 and TR-β1 protein levels are significantly decreased in the surviving non-infarcted myocardium. Moderate-intensity exercise training significantly increases TR-α1 and TR-β1 protein expression, which in turn may upregulate α-MHC and improve myocardial contractile function and prognosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app