CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Novel noncontiguous duplications identified with a comprehensive mutation analysis in the DMD gene by DMD gene-targeted sequencing.

Gene 2018 March 2
Genomic rearrangements, such as intragenic deletions and duplications, are the most prevalent types of mutation in the DMD gene, and DMD mutations underlie Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Using multiplex ligation dependent probe amplification (MLPA) and DMD gene-targeted sequencing, we performed a molecular characterization of two cases of complex noncontiguous duplication rearrangements that involved inverted duplications. The breakpoint sequences were analyzed to investigate the mechanisms of the rearrangement. The two cases shared the same duplication events (Dup-nml-Dup/inv), and both involved microhomology and small insertions at the breakpoints. Additionally, in case 1, SNP sequencing results indicated that the de novo duplication mutation arose in the allele that originated from the grandfather. This study has identified a novel type of DMD complex rearrangement and provides insight into the molecular basis of this genomic rearrangement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app