Add like
Add dislike
Add to saved papers

Two novel susceptibility loci for type 2 diabetes mellitus identified by longitudinal exome-wide association studies in a Japanese population.

Genomics 2017 December 20
Recent genome-wide association studies identified genetic variants that confer susceptibility to type 2 diabetes mellitus (T2DM). However, few longitudinal genome-wide association studies of this metabolic disorder have been reported to date. Therefore, we performed a longitudinal exome-wide association study of T2DM, using 24,579 single nucleotide polymorphisms (SNPs) and repeated measurements from 6022 Japanese individuals. The generalized estimating equation model was applied to test relations of SNPs to three T2DM-related parameters: prevalence of T2DM, fasting plasma glucose level, and blood glycosylated hemoglobin content. Three SNPs that passed quality control were significantly (P<2.26×10-7 ) associated with two of the three T2DM-related parameters in additive and recessive models. Of the three SNPs, rs6414624 in EVC and rs78338345 in GGA3 were novel susceptibility loci for T2DM. In the present study, the SNP of GGA3 was predicted to be a genetic variant whose minor allele frequency has recently increased in East Asia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app