Add like
Add dislike
Add to saved papers

Structural origin of hardness decrease in irradiated sodium borosilicate glass.

Mechanical properties such as hardness and modulus of sodium borosilicate (NBS) glasses in irradiation conditions were studied extensively in recent years. With irradiation of heavy ions, a trend that the hardness of NBS glasses decreased and then stabilized with increase of dose has been reported. Variations in network structures were suggested for the decrease of hardness after irradiation. However, details of these variations in a network of glass are not clear yet. In this paper, molecular dynamics was applied to simulate the network variations in a type of NBS glass and the changes in hardness after xenon irradiation. The simulation results indicated that hardness variation decreased with fluence in an exponential law, which was consistent with experimental results. The origin of hardness decrease after irradiation might be attributed to the break of Biv -O links that could be derived from the (1) decrease of average coordinate number of boron, (2) decrease of Si-O-Biv bonds, and (3) increase of non-bridging oxygen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app