Journal Article
Review
Add like
Add dislike
Add to saved papers

Pluripotent Stem Cell-Derived Human Tissue: Platforms to Evaluate Drug Metabolism and Safety.

AAPS Journal 2017 December 22
Despite the improvements in drug screening, high levels of drug attrition persist. Although high-throughput screening platforms permit the testing of compound libraries, poor compound efficacy or unexpected organ toxicity are major causes of attrition. Part of the reason for drug failure resides in the models employed, most of which are not representative of normal organ biology. This same problem affects all the major organs during drug development. Hepatotoxicity and cardiotoxicity are two interesting examples of organ disease and can present in the late stages of drug development, resulting in major cost and increased risk to the patient. Currently, cell-based systems used within industry rely on immortalized or primary cell lines from donated tissue. These models possess significant advantages and disadvantages, but in general display limited relevance to the organ of interest. Recently, stem cell technology has shown promise in drug development and has been proposed as an alternative to current industrial systems. These offerings will provide the field with exciting new models to study human organ biology at scale and in detail. We believe that the recent advances in production of stem cell-derived hepatocytes and cardiomyocytes combined with cutting-edge engineering technologies make them an attractive alternative to current screening models for drug discovery. This will lead to fast failing of poor drugs earlier in the process, delivering safer and more efficacious medicines for the patient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app