Add like
Add dislike
Add to saved papers

Non-suckling starvation of neonatal mice promotes primordial follicle formation with activation of ovarian autophagy.

Around the time of oocyte meiotic arrest, germ cell nest breakdown occurs, and primordial follicle (PF) formation is initiated at the perinatal stage. Recently, autophagy was implicated in this process. Autophagy is induced by nutrient starvation. This study was conducted to understand how starvation affects PF formation and autophagy induction during neonatal life. Suckling of neonatal female mice was blocked immediately after birth for 12-36 h to induce starvation. The numbers of PFs at each stage were subsequently counted from serial sections of ovaries. The expression of autophagy-related proteins was also evaluated. The number of PFs peaked at 60 h after birth in the control group. The numbers for the starvation groups were significantly higher than those for the control groups at 12 and 36 h. LC3B was clearly present in the oocyte cytoplasm. At 36 h after birth, the starvation group showed a higher rate of LC3II/LC3-I expression as a marker for autophagy. Moreover, the expression of p62 as a selective substrate for autophagy decreased compared to the control group. The expression of caspase-9 as a marker for apoptosis tended to be lower at 36 h in the starvation groups. These results indicate that starvation promotes PF formation with a concomitant activation of autophagy in early neonatal ovaries, suggesting that autophagy induction during follicle assembly might increase the number of PFs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app