Add like
Add dislike
Add to saved papers

Characterizations of Polysulfone/Ferrihydrite Mixed Matrix Membranes for Water/Wastewater Treatment.

  This study aimed to investigate the effects of ferrihydrite (Fh) nanoparticle loading on the physicochemical properties of polysulfone (PSf) membranes fabricated via the phase inversion method. The morphologies and physicochemical properties of prepared Fh and PSf/Fh mixed matrix membranes (MMMs) were characterized using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transmission infra-red (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), pure water flux analysis, contact angle measurement, and membrane porosity analysis. FTIR study indicated that a new O-H band was formed when Fh was added into the membrane matrix. SEM analysis showed the formation of typical asymmetric membrane structures with elongated fingerlike and looser porous layers. Increasing the loading of Fh significantly enhanced membrane pure water flux from 230.2 L/m2•h (M-Fh 0%) to 726.6 L/m2•h (M-Fh 15.3%), attributed to the improved membranes structures, membranes wettability, surface roughness, and overall porosity. The findings suggest incorporation of Fh into PSf membranes improves physicochemical properties of the membranes which are applicable for water/wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app