Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors.

Microbial Cell Factories 2017 December 22
BACKGROUND: Through pretreatment and enzymatic saccharification lignocellulosic biomass has great potential as a low-cost feedstock for production of bacterial nanocellulose (BNC), a high value-added microbial product, but inhibitors formed during pretreatment remain challenging. In this study, the tolerance to lignocellulose-derived inhibitors of three new BNC-producing strains were compared to that of Komagataeibacter xylinus ATCC 23770. Inhibitors studied included furan aldehydes (furfural and 5-hydroxymethylfurfural) and phenolic compounds (coniferyl aldehyde and vanillin). The performance of the four strains in the presence and absence of the inhibitors was assessed using static cultures, and their capability to convert inhibitors by oxidation and reduction was analyzed.

RESULTS: Although two of the new strains were more sensitive than ATCC 23770 to furan aldehydes, one of the new strains showed superior resistance to both furan aldehydes and phenols, and also displayed high volumetric BNC yield (up to 14.78 ± 0.43 g/L) and high BNC yield on consumed sugar (0.59 ± 0.02 g/g). The inhibitors were oxidized and/or reduced by the strains to be less toxic. The four strains exhibited strong similarities with regard to predominant bioconversion products from the inhibitors, but displayed different capacity to convert the inhibitors, which may be related to the differences in inhibitor tolerance.

CONCLUSIONS: This investigation provides information on different performance of four BNC-producing strains in the presence of lignocellulose-derived inhibitors. The results will be of benefit to the selection of more suitable strains for utilization of lignocellulosics in the process of BNC-production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app