Add like
Add dislike
Add to saved papers

Utility of gradient recalled echo magnetic resonance imaging for the study of myelination in cuprizone mice treated with fingolimod.

The availability of high-field-strength magnetic resonance imaging (MRI) systems has brought about the development of techniques that aim to map myelination via the exploitation of various contrast mechanisms. Myelin mapping techniques have the potential to provide tools for the diagnosis and treatment of diseases, such as multiple sclerosis. In this study, we evaluated the sensitivity of T2 *, frequency shift and susceptibility measures to myelin levels in a cuprizone mouse model of demyelination. The model was supplemented with two different dosages of fingolimod, a drug known to positively affect demyelination. A decrease in grey-white matter contrast with the cuprizone diet was observed for T2 *, frequency shift and susceptibility measures, together with myelin basic protein antibody findings. These results indicate that T2 *, frequency shift and susceptibility measures have the potential to act as biomarkers for myelination. Susceptibility was found to be the most sensitive measure to changes in grey-white matter contrast. In addition, fingolimod treatment was found to reduce the level of demyelination, with a larger dosage exhibiting a greater reduction in demyelination for the in vivo MRI results. Overall, susceptibility mapping appears to be a more promising tool than T2 * or frequency shift mapping for the early diagnosis and treatment of diseases in which myelination is implicated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app