Add like
Add dislike
Add to saved papers

Endogenous auxin and its manipulation influence in vitro shoot organogenesis of citrus epicotyl explants.

Endogenous auxin is an important regulator of in vivo organ development, but its role in in vitro organogenesis is unclear. It has been observed that the basal end of epicotyl cuttings of juvenile citrus seedlings produces fewer shoots than the apical end. Here, we report that elevated endogenous auxin levels in the basal end of citrus epicotyl cuttings are inhibitory for in vitro shoot organogenesis. Using transgenic citrus plants expressing an auxin-inducible GUS reporter gene, we have observed elevated levels of auxin at the basal end of stem cuttings that are mediated by polar auxin transport. Depleting endogenous auxin or blocking polar auxin transport enhances shoot organogenesis. An auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA), can also enhance shoot organogenesis independent of its action on polar auxin transport. Finally, we demonstrate that the promotional effects of depleting endogenous auxin or blocking polar auxin transport on shoot organogenesis are cytokinin-dependent. Our study thus provides meaningful insights into possible roles of endogenous auxin and polar auxin transport, as well as auxin-cytokinin interactions, in in vitro shoot organogenesis. Meanwhile, our results may also provide practical strategies for improving in vitro shoot organogenesis for citrus and many other plant species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app