Add like
Add dislike
Add to saved papers

Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats.

Neurological Research 2018 Februrary
Objectives Focal cerebral ischemia may induce synaptic, electrophysiological, and metabolic dysfunction in remote areas. We have shown that the remote dendritic spine density changes and electrophysiological diaschisis in the acute and subacute stages after stroke previously. Here, we further evaluated electrophysiological outcomes and synapto-dendritic plasticity in long-term recovery in the contralateral cortex following focal cerebral ischemia. Methods Male Sprague-Dawley rats were subjected to intraluminal suture occlusion for 90 min or sham-occlusion. Somatosensory electrophysiological recordings (SSEPs) and neurobehavioral tests were recorded each day for 28 days. Postmortem brains were sectioned and subjected to Nissl staining and Golgi-Cox impregnation through a 28-day period following ischemic stroke. Results In the ipsilateral cortex, infarct size in the cortex and striatum was decreased after the subacute stage; the brains showed reduced swelling in the cortex and stratum 3 days after ischemic insults. Dendritic spine density and SSEP amplitude decreased significantly during a 28-day recovery period. In the contralateral cortex, dendritic spine density and SSEP amplitude decreased significantly for 21 days after ischemic stroke, but recovered to baseline by day 28. The deterioration of the dendritic spine (density reduction) in the ischemic cortex was observed; however, this increased neuroplasticity in the contralateral cortex in the subacute stage. Discussion Focal cerebral ischemia-reperfusion induces time-dependent reduction of dendritic spine density and electrophysiological depression in both the ipsilateral and contralateral cortices and intact brain. This neuroanatomical and electrophysiological evidence suggests that neuroplasticity and functional re-organization in the contralateral cortex is possible following focal cerebral ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app