Add like
Add dislike
Add to saved papers

Dexamethasone-induced upregulation of Ca V 3.2 T-type Ca 2+ channels in rat cardiac myocytes.

Glucocorticoids are widely used to treat acute and chronic diseases. Unfortunately, their therapeutic use is associated with severe side effects. Glucocorticoids are known to regulate several ion channels in cardiac myocytes, including voltage-dependent Ca2+ channels. Low-voltage-activated T-type Ca2+ channels are expressed in ventricular myocytes during the fetal and perinatal period, but are practically absent in the adult. However, these channels can be re-expressed in adult cardiomyocytes under some pathological conditions. We have investigated the glucocorticoid regulation of T-type Ca2+ channels in rat cardiomyocytes. Molecular studies revealed that dexamethasone induces the upregulation of CaV 3.2 mRNA in neonatal rat ventricular myocytes, whereas CaV 3.1 mRNA is only slightly affected. Patch-clamp recordings confirmed that T-type Ca2+ channel currents were upregulated in dexamethasone treated cardiomyocytes, and the addition of 50 μmol/L NiCl2 demonstrated that the CaV 3.2 channel is responsible for this upregulation. The effect of dexamethasone on CaV 3.2 is mediated by the activation and translocation to the cell nucleus of the glucocorticoid receptor (GR). We have isolated the upstream promoter of the Cacna1h gene and tested its activity in transfected ventricular myocytes. The initial in silico analysis of Cacna1h promoter revealed putative glucocorticoid response elements (GREs). Transcriptional activity assays combined with deletion analyses and chromatin immunoprecipitation assays demonstrated that GR binds to a region a GRE located in -1006/-985 bp of Cacna1h promoter. Importantly, upregulation of the CaV 3.2 channel is also observed in vitro in adult rat ventricular myocytes, and in vivo in a rat model of excess of glucocorticoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app