Add like
Add dislike
Add to saved papers

Long-Term Hypoxic Tolerance in Murine Cornea.

Kosaku, Kazuhiro, Tomonori Harada, Toyoharu Jike, Isao Tsuboi, and Shin Aizawa. Long-term hypoxic tolerance in murine cornea. High Alt Med Biol 19:35-41, 2018.

AIMS: The cornea is believed to be an exceedingly sensitive organ to decreases in atmospheric oxygen concentrations. Previous corneal studies have shown the hypoxic tolerance of the cornea during short-term and local hypoxic exposure. This study investigated the tolerance of the cornea during long-term and systemic hypoxia.

METHODS AND RESULTS: Mice were bred under normobaric normoxia or hypoxia (10% oxygen concentration) conditions for 140 days. The layer structure, surface microvilli, and glycogen granules in the corneal epithelium were examined on day 2 and on day 140. The layer and surface structures of the corneal epithelium were normally maintained during the long-term hypoxia. Hypoxic stress caused a decrease in the glycogen granules in the corneal epithelial cells.

CONCLUSIONS: Maintenance of normal structures during long-term hypoxia suggests that the cornea has a high tolerance for hypoxic stress. The quantity of glycogen in corneal epithelial cells is considered an index of corneal hypoxia resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app