Add like
Add dislike
Add to saved papers

Realization of a stable, monodisperse water-in-oil droplet system with micro-scale and nano-scale confinement for tandem microscopy and diffusion NMR studies.

Soft Matter 2018 January 18
In this work we generate stable and monodisperse water-in-oil emulsions using a co-flowing geometry that produced droplet sizes between 13 μm and 250 μm. The drops survived transfer to NMR tubes and were stable for at least 26 hours, enabling the performance of pulsed-field-gradient NMR experiments in addition to microscopy. The drops sizes achieved as a function of flow rate agree well with a simple model for droplet generation: this yields a precise measure of the interfacial tension. The design of a cell mimetic environment with nano-scale confinement has also been demonstrated with diffusion measurements on macromolecules (PEG and Ficoll70) within droplets that are further structured internally using agarose gel networks. Containing the agarose gel in droplets appears to provide very reproducible and homogeneous network environments, enabling quantitative agreement of Ficoll70 dynamics with a theoretical model, with no fit parameters, and, with PEG, yielding a systematic polymer-size dependent slowing down in the network. This is in contrast with bulk agarose, where identical macromolecular diffusion measurements indicate the presence of heterogeneities with water pockets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app