Add like
Add dislike
Add to saved papers

Dynamical decoupling of nitroxides in o-terphenyl: a study of temperature, deuteration and concentration effects.

We have characterized the temperature dependent transverse relaxation for 100 μM protonated and deuterated nitroxides in both protonated and deuterated o-terphenyl (OTP and dOTP) in distinct temperature regimes between 10 K and room temperature (RT). The choice of sample compositions allowed for a clear separation into slow and fast relaxation contributions based on a sum of two stretched exponential (SSE) parameterization between 10 and 60 K, and likewise at RT. The slow contribution is purely matrix dependent, while the fast process is determined by an interplay between a molecule and a matrix. Our systematic study of dynamical decoupling (DD) as a function of temperature (at 40, 80 K and RT), spin concentration, deuteration of nitroxide and/or OTP matrix and DD scheme for 1 to 5 refocusing pulses reveals that DD significantly prolongs phase memory times with respect to Hahn echo relaxation at 40 K, which we discuss in an SSE framework. At 80 K and RT, where (intra)molecular motions dominate relaxation, DD does not preserve electron spin coherence independent of the sample composition. Instead, we report a matrix nuclei dependent performance of the applied DD scheme at 40 K with Uhrig outperforming Carr-Purcell DD in OTP, and vice versa for a dOTP matrix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app