Add like
Add dislike
Add to saved papers

Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-Crosslinked Nanosheets: Multimodal Imaging-Guided Photothermal Cancer Therapy.

Copper-containing nanomaterials have been applied in various fields because of their appealing physical, chemical, and biomedical properties/functions. Herein, for the first time, a facile, room-temperature, and one-pot method of simply mixing copper ions and sulfur-doped carbon dots (CDs) is developed for the synthesis of copper/carbon quantum dot (or CD)-crosslinked nanosheets (CuCD NSs). The thus-obtained CuCD NSs with the size of 20-30 nm had a high photothermal conversion efficiency of 41.3% and good photothermal stability. Especially, after coating with thiol-polyethylene glycol and fluorescent molecules, the resultant CuCD NSs could selectively target tumor tissues and realize multimodal (photoacoustic, photothermal, and fluorescence) imaging-guided cancer therapy. More importantly, our CuCD NSs exhibited laser-triggered cytosolic delivery, lysosomal escape, and nuclear-targeting properties, which greatly enhanced their therapeutic efficacy. The significantly enhanced tumor accumulation of CuCD NSs after in situ tumor-site laser irradiation was also observed in in vivo experiments. These in vitro and in vivo events occurring during the continuous laser irradiation have not been observed. Overall, this work develops a CD-assisted synthetic method of photothermal nanoagents for triple-modal imaging-guided phototherapy and deepens our understanding of the action mechanism of photothermal therapy, which will promote the development of nanomedicine and beyond.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app