Add like
Add dislike
Add to saved papers

Histone deacetylase 6 (HDAC6) deacetylates extracellular signal-regulated kinase 1 (ERK1) and thereby stimulates ERK1 activity.

Histone deacetylase 6 (HDAC6), a class IIb HDAC, plays an important role in many biological and pathological processes. Previously, we found that ERK1, a downstream kinase in the mitogen-activated protein kinase signaling pathway, phosphorylates HDAC6, thereby increasing HDAC6-mediated deacetylation of α-tubulin. However, whether HDAC6 reciprocally modulates ERK1 activity is unknown. Here, we report that both ERK1 and -2 are acetylated and that HDAC6 promotes ERK1 activity via deacetylation. Briefly, we found that both ERK1 and -2 physically interact with HDAC6. Endogenous ERK1/2 acetylation levels increased upon treatment with a pan-HDAC inhibitor, an HDAC6-specific inhibitor, or depletion of HDAC6, suggesting that HDAC6 deacetylates ERK1/2. We also noted that the acetyltransferases CREB-binding protein and p300 both can acetylate ERK1/2. Acetylated ERK1 exhibits reduced enzymatic activity toward the transcription factor ELK1, a well-known ERK1 substrate. Furthermore, mass spectrometry analysis indicated Lys-72 as an acetylation site in the ERK1 N terminus, adjacent to Lys-71, which binds to ATP, suggesting that acetylation status of Lys-72 may affect ERK1 ATP binding. Interestingly, an acetylation-mimicking ERK1 mutant (K72Q) exhibited less phosphorylation than the WT enzyme and a deacetylation-mimicking mutant (K72R). Of note, the K72Q mutant displayed decreased enzymatic activity in an in vitro kinase assay and in a cellular luciferase assay compared with the WT and K72R mutant. Taken together, our findings suggest that HDAC6 stimulates ERK1 activity. Along with our previous report that ERK1 promotes HDAC6 activity, we propose that HDAC6 and ERK1 may form a positive feed-forward loop, which might play a role in cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app