JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Cartilage regeneration and ageing: Targeting cellular plasticity in osteoarthritis.

Ageing processes play a major contributing role for the development of Osteoarthritis (OA). This prototypic degenerative condition of ageing is the most common form of arthritis and is accompanied by a general decline, chronic pain and mobility deficits. The disease is primarily characterized by articular cartilage degradation, followed by subchondral bone thickening, osteophyte formation, synovial inflammation and joint degeneration. In the early stages, osteoarthritic chondrocytes undergo phenotypic changes that increase cell proliferation and cluster formation and enhance the production of matrix-remodelling enzymes. In fact, chondrocytes exhibit differentiation plasticity and undergo phenotypic changes during the healing process. Current studies are focusing on unravelling whether OA is a consequence of an abnormal wound healing response. Recent investigations suggest that alterations in different proteins, such as TGF-ß/BMPs, NF-Kß, Wnt, and Cx43, or SASP factors involved in signalling pathways in wound healing response, could be directly implicated in the initiation of OA. Several findings suggest that osteoarthritic chondrocytes remain in an immature state expressing stemness-associated cell surface markers. In fact, the efficacy of new disease-modifying OA drugs that promote chondrogenic differentiation in animal models indicates that this may be a drug-sensible state. In this review, we highlight the current knowledge regarding cellular plasticity in chondrocytes and OA. A better comprehension of the mechanisms involved in these processes may enable us to understand the molecular pathways that promote abnormal repair and cartilage degradation in OA. This understanding would be advantageous in identifying novel targets and designing therapies to promote effective cartilage repair and successful joint ageing by preventing functional limitations and disability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app