Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypoxia-increased RAGE expression regulates chemotaxis and pro-inflammatory cytokines release through nuclear translocation of NF-κ B and HIF1α in THP-1 cells.

The potential role of hypoxia in mediating the receptor for advanced glycation end products (RAGE) expression deserves to be confirmed. And the role of RAGE in hypoxia-induced chemotaxis and inflammation is still unclear. In present study, THP-1 cells were pretreated with siRNA to block HIF1α, NF-κ B, or RAGE, followed by exposed to hypoxia (combined with H2 O2 or SNP), and then RAGE expression, nuclear translocation of HIF1α and NF-κ B, release of TNF-α and IL-1β, as well as expression of MCP-1 and CCR2 were measured. The results revealed that RAGE mRNA and protein in THP-1 cells were significantly increased after exposed into hypoxia atmosphere, especially into the solution containing SNP or H2 O2 . Moreover, SNP or H2 O2 exposure could further amplify hypoxia-induced nuclear translocation of HIF-1α and NF-κ B. Knockdown HIF-1α or NF-κ B by siRNAs could reduce hypoxia- and oxidative stress-induced RAGE hyper-expression. And pretreatment THP-1 cells with RAGE siRNA or NF-κ B siRNA could reduce hypoxia- and oxidative stress-induced expression of MCP-1 and CCR2, and release of TNF-α and IL-1β. Thus, hypoxia not only increases RAGE expression in THP-1 cells by promoting nuclear translocation of NF-κ B and HIF1α, but also regulates chemotaxis and pro-inflammatory cytokines release, which may be partially mediated through upregulation of RAGE expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app