Add like
Add dislike
Add to saved papers

Use of 2,3,5-triphenyltetrazolium chloride-stained brain tissues for immunofluorescence analyses after focal cerebral ischemia in rats.

The middle cerebral artery occlusion (MCAO) model in rodents has been widely used as model for studying brain ischemic stroke. TTC (2,3,5-triphenyltetrazolium chloride) staining in fresh tissues is used to evaluate the size of the infarct in MCAO model, and TTC-stained brain tissues are considered to be possible to bring a damage to the anatomical structure of neuronal cells and unsuitable for immunofluorescence analyses of cytology, and discarded after evaluation of infarct volume. Another group of models with in vivo fixation was required to the pathological or histological analyses of the infarct brains, which lead to double the numbers of animals in researches. However, some evidences indicate that if we properly optimized staining protocol, TTC-stained brain tissues might be suitable for cytological analyses. In this work, we have optimized the immunofluorescent staining methods of TTC-stained brain slices, and found that TTC-stained brain tissues are suitable for quantitative and qualitative analyses of microglia, astrocytes and neuroblasts, the morphology of theses cell were nearly identical to the in-vivo fixed models. Our optimized-protocol provide two advantages over traditional methods one of them is providing the precise the infarct region, which reduces the differences within groups, the other one is decreasing the total number of animals in research dramatically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app